

MBV-003-1164004

Seat No.

M. Sc. (Sem. IV) Examination April / May - 2018

Mathematics : CMT - 4004 (Graph Theory) (New Course)

Faculty Code: 003 Subject Code: 1164004

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) Each question carries 14 marks.

(2) All the question are compulsory.

- 1 Answer any seven from following short questions: 7×2=14
 - (i) Define following terms:Self loop, Parallel edges, null graph and simple graph.
 - (ii) Define subgraph of a graph. Draw a graph G with its two subgraphs H_1 , H_2 so that $V(H_1) \cap V(H_2)$ is a single ton set and $E(H_1) \cap E(H_2) = \text{empty set.}$
 - (iii) Define closed walk and cycle. Give an example of a closed walk of a graph G which is not a cycle in G.
 - (iv) Define Eulerian graph. Draw an Eulerian graph G, which is a simple graph but it is not a k-regular graph for any $k \in \{1, 2,, |V(G)| 1\}$.
 - (v) Define Hamiltonian cycle and Hamiltonian graph. Draw a wheel graph Wn with its a Hamiltonian cycle, for some integer $n \ge 3$.
 - (vi) Draw a simple graph G with following properties: Number of components of G is at least three, no component of G is a null graph, |V(G)| = 9 and $|E(G)| \le 7$.
 - (vii) Define incidence matrix of a self loopness graph G. Also write down the incidence matrix K_3 (Complete graph on three vertices).

(viii) Write down all the spanning trees of following graph G.

2 Attempt any two:

 $2 \times 7 = 14$

- (a) Define connected graph G. Prove that a graph G is disconnected if there are two non-empty disjoint subsets V_1 , V_2 of V(G) such that
 - (1) $V_1 \cup V_2 = V(G)$ and
 - (2) There is no edge $e \in E(G)$, whose one end vertex lies in V_1 and another end vertex lies in V_2 .
- (b) For a connected graph G, prove that G is an open Eulerian graph if G has exactly two odd vertices and remaining all vertices are even vertices if exist.
- (c) Let G be a graph and it contains exactly two odd vertices say x and y. Let for any $V \in V(G) \{x, y\}$, $d_G(V) = \text{even. Prove that there must}$ be a path in G between x and y.
- (d) Let T be a tree. Prove that any two distinct vertices u and v of T, there is a unique path between u and v in T.

3 Attempt any one:

 $1 \times 14 = 14$

- (a) For a connected planner graph G, prove that f = e n + 2. Also derive following:
 - $(1) e \ge \frac{3f}{2}$
 - $(2) e \leq 3n 6.$

Where e = |E(g)|, n = |V(G)| and f = the number of faces in the graph G.

- (b) For a connected graph G, prove that the ring sum of two cutsets of G is either a cutset for G or it is an edge disjoint union of two cutsets.
- (c) State and prove Eulerian theorem.

4 Attempt any two:

 $2 \times 7 = 14$

- (a) State and prove Max flow min cut theorem.
- (b) Prove that Kuratowaski's first graph K_5 and second graph $K_{3,3}$ both are non-plannar graphs.
- (c) For a tree T, prove that |E(T)| = |V(T)| 1.
- (d) For an acyclic graph G, Prove that |E(G)| = |V(G)| k, where k is the number of components for the graph G.

5 Attempt any seven:

 $7 \times 2 = 14$

- (1) Define minimally connected graph. Draw a minimally connected graph G with |V(G)| = 4.
- (2) Define eccentry of a Vertex and distance between two vertices in a connected graph.
- (3) State the statement of Konig's theorem. Also write down number centers for a path P_6 on six vertices.
- (4) Write definitions of fundamental cycle and fundamental cut-set of a graph G.
- (5) Define weighted graph and minimal spanning tree.
- (6) Draw dual graphs of K_3 and K_4 .
- (7) Draw a simple graph whose adjacency matrix is given by

$$X(G) = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

MBV-003-1164004]

3

[Contd....

(8) Write down proper edge coloring and proper vertex coloring of following graph:

